
Bias in LLMs as Annotators: The Effect of Party Cues on Labelling

Decision by Large Language Models

Sebastián Vallejo Vera, University of Western Ontario, sebastian.vallejo@uwo.ca∗

Hunter Driggers, University of Western Ontario, mdrigger@uwo.ca.

Abstract

Human coders are biased. We test similar biases in Large Language Models (LLMs) as annotators. By
replicating an experiment run by Ennser-Jedenastik and Meyer (2018), we find evidence that LLMs
use political information, and specifically party cues, to judge political statements. Not only do LLMs
use relevant information to contextualize whether a statement is positive, negative, or neutral based
on the party cue, they also reflect the biases of the human-generated data upon which they have
been trained. We also find that unlike humans, who are only biased when faced with statements from
extreme parties, LLMs exhibit significant bias even when prompted with statements from center-left
and center-right parties. The implications of our findings are discussed in the conclusion.

∗Corresponding author. We would like to thank Laurenz Ennser-Jedenastik and Thomas M. Meyer from the University
of Vienna for kindly sharing their data and code with us.

ar
X

iv
:s

ub
m

it/
58

17
76

7
 [

cs
.L

G
]

 2
8

A
ug

 2
02

4

1 Introduction

The increasing sophistication of large language models (LLMs) has allowed for their more prominent

presence in political science research. One particular area gathering significant attention in the field is

the use of LLMs as annotators. Research has shown promising results, with LLMs often outperforming

human coders (Gilardi, Alizadeh and Kubli, 2023) and providing comparable accuracy when labelling

political text, across multiple languages (Heseltine and Clemm von Hohenberg, 2024). While researchers

have evaluated the performance of LLMs as annotators across different domains, there still little infor-

mation on how the known biases of LLMs (see Gallegos et al., 2024) can affect their performance.

For human annotators, studies show that political cues, such as party, have an effect on their coding

decisions (Laver and Garry, 2000; Benoit et al., 2016; Ennser-Jedenastik and Meyer, 2018). In this

research note, we test whether this is also true for LLMs. We replicate the experimental design from

Ennser-Jedenastik and Meyer (2018), who tested coder bias by having humans annotate policy statements

on immigration connected with party cues. We use the same treatment (i.e., the same policy statement

with different party cues) to evaluate how two LLM families, OpenAI’s ChatGPT and Meta’s LLaMa,

determine the sentiments behind policy statements (i.e., positive, negative, or neutral). The results

show important differences in internal consistency across LLM families, low agreement between LLM

and human coders and, most importantly, significant discrepancies conditional on treatment. In our

conclusion, we discuss the implications of our results with respect to the use of LLMs as political text

annotators.

2 Bias in Annotation

Numerous political behavior studies have shown that individuals’ perceptions can be biased based on

characteristics that are relevant to political preference formation: gender, education, racial identity,

and partisanship. Since annotators are not immune to their political contexts, similar biases have been

1

observed in coding tasks. In a wide-ranging meta-analysis, Webb Williams et al. (2023) show various

sources of annotator bias, including partisanship and gender, when completing subjective and objective

coding tasks.1 Other research finds that partisanship can affect reactions of disgust (Ahn et al., 2014)

and responses on opinion surveys (Schaffner and Luks, 2018; Bullock and Lenz, 2019). In the study that

we replicate in this paper, Ennser-Jedenastik and Meyer (2018) show that coders use heuristics from

party labels when judging political statements.

Research on LLMs has also explored biases and incongruities on their responses. Despite the promises

and fanfare from LLM developers, studies have shown multiple sources of errors (Hicks, Humphries and

Slater, 2024) as well as political bias in their output (Urman and Makhortykh, 2023; Rotaru, Anagnoste

and Oancea, 2024). Motoki, Pinho Neto and Rodrigues (2024), for example, find that LLMs tend to

align more with left-of-center viewpoints, a result similar to the one obtained by Rozado (2024) when

probing LLMs with political orientation tests. More broadly, studies on LLMs have consistently found

biases based on contextual and cultural factors (Gallegos et al., 2024), leading to the misrepresentation of

certain social groups (Yang et al., 2022), gender stereotyping (Dong et al., 2024), and the reinforcement

of normativity (Bender et al., 2021).

Despite the known limitation of LLMs, most research on LLMs as annotators has focused solely

on accuracy, comparing their performance with that of human annotators. Relevant political science

research has shown that LLMs outperform human annotators, at a fraction of the price, with minimal

effects on downstream performance (see Braylan, Alonso and Lease, 2022; Heseltine and Clemm von

Hohenberg, 2024; Gilardi, Alizadeh and Kubli, 2023). While the results from these studies provide

promising avenues for the application of LLM as coders, less attention has been given to the effect of

known LLM biases on performance.

In this research note, we test the possible biases in LLM annotation resulting from political cues. We

1Webb Williams et al. (2023) also find that there is low generalizability of the results. For example, gender biases found in
U.S. annotators were not found in Dutch annotators.

2

argue that LLMs will use political contextual information to evaluate statements and produce responses.2

As a simplified explanation, Transformer-based LLM assign representations (i.e., embeddings) to tokens

by relating their occurrence in conjunction with other tokens in the text. To do this on a large scale,

LLMs are fed enormous amounts of text from various sources.3 These corpora are not created in a

vacuum, instead reflecting social realities. Thus, if certain parties (e.g., far-right parties) are often

mentioned in certain contexts (e.g., discriminatory practices), LLMs are more likely to associate these

parties with those contexts. When LLMs annotate text, they will use high-information tokens (i.e.,

political parties) to guide their responses, just as human use parties cues as a heuristic to evaluate

statements (Ennser-Jedenastik and Meyer, 2018). In the reminder of the paper, we evaluate to what

degree party cues affect the output of LLMs when used as annotators.

3 Replication Setup

To test possible biases in LLMs as annotators, we adapt Ennser-Jedenastik and Meyer (2018)’s exper-

iment on party cues and human annotators. In their study, Ennser-Jedenastik and Meyer (2018) have

ten coders classify 200 policy statements on immigration and migrant integration from Austrian election

manifestos produced between 1986 and 2013. They remove all party labels, references to previous or

subsequent sentences, and gender-sensitive language. They then randomly assign a party cue (i.e, the

treatment) to each statement: Green Party (Grüne - Extreme Left), Social Democrats (SPÖ - Center

Left), People’s Party (ÖVP - Center Right), or Freedom Party (FPÖ - Extreme Right). The control

group is the version without a party cue. An example of a statement without a party cue is “We stand

for a modern and objective immigration policy,” while a randomly treated statement would be “We

[Greens/Social Democrats/Christian Democrats/Freedomites (‘Freiheitliche’)] stand for a modern and

objective immigration policy.” Each coder receives 200 statements with randomly assigned conditions,

2This is similar to heuristic processing in human annotator when using political party cues to evaluate statements (Ennser-
Jedenastik and Meyer, 2018).

3For a more detailed explanation on the encoding-decoding infrastructure of Transformer-based model, see Timoneda and
Vallejo Vera (2024).

3

and are subsequently asked whether the statement conveys a positive or negative stance in immigration,

or if the statement is neutral or unclear. Finally, Ennser-Jedenastik and Meyer (2018) test whether

the party cue has an effect on the annotation. They find that coders are more likely to rate positively

statements with the Greens party cue (i.e., extreme left), and more likely to rate negatively statements

with the FPÖ party cue (i.e., extreme right), with no effect from statements with centrist-party cues

(e.g., SPÖ and ÖVP). We replicate the results from their experiment in Table 1.

For our analysis, we use the same statements, and the same instructions given to annotators.4 We test

two LLM families: OpenAI’s ChatGPT (ChatGPT-3.5 Turbo and ChatGPT-4o), and Meta’s LLaMa

(LLaMa 3-70B and LLaMa 3.1-70B). Each LLM is prompted using the same text that an annotator

would have read in Ennser-Jedenastik and Meyer (2018)’s study. Each prompt is run in a fresh instance

of the LLM client, making each response independent from the previous one. Given the independence

of each instance, rather than randomly assigning a party cue to each statement (i.e., prompt), we show

each LLM all 200 statements with each party cue, including the control. In total, each LLM labels

1000 statements (200 statements x 5 party cues). Since the output from LLMs is stochastic, we increase

deterministic answers by setting the temperature to 0 for all runs. Additionally, we replicate each run

(200 statements) 10 times, allowing us to measure within model consistency and provide some semblance

of replicability.

To evaluate coding bias, we follow Ennser-Jedenastik and Meyer (2018) and use an ordered logistic

regression to estimate the effect of the treatment on the labelling decisions of the LLMs. To that end,

we estimate the following model:

yijk = cuej + contenti + llmk + ϵijk

where yijk is the response of LLM k to statement i with party cue treatment j. LLMs categorize each

statement as negative, neutral/unclear, positive. Our main variable of interest is cuej , an indicator

4See the Appendix for an example of the prompt given to the LLMs.

4

variable that takes the value of the four party labels (i.e., Greens, SPÖ, ÖVP, and FPÖ), with the no

label statements as the reference category. We control for content-related factors using either fixed or

random effects at the sentence level. We also include fixed effects to capture LLM-specific effects.

4 Inter-LLM and Inter-Coder Reliability

Figure 1: Within-LLM consistency.

We first describe within-model consistency by looking at inter-run reliability. To this end, we estimate

Krippendorff’s Alpha, an inter-coder reliability (ICR) score, for each model across the multiple runs (ten

in total). Within model Krippendorff’s Alpha scores by party cue (treatment) are shown in Figure 1.

Overall, within model consistency is relatively high [see ICR chart]. The worst performing model is

GPT-3.5 Turbo, with an average ICR of .78. There are important differences across LLM families:

LLaMa models are highly consistent across runs, with an average Alpha close to 1. Within models,

however, there are no important differences across party cues.

In Figure 2a, we visualize Krippendorff’s Alpha for statements with the same treatment between each

model family. Since every LLM labels each statement ten times, we adjudicate discrepancies following

5

(a) Within-LLM family ICR (b) ICR across LLMs

Figure 2: Inter-coder reliability scores within-LLM family, and across all LLMs. ICR scores estimated
for each party cue.

majority rules.5 The average Alpha score across cues for OpenAI models is .55, considered [see ICR

chart] according to [CITE]. We also show Krippendorff’s Alpha for inter-LLM agreement when labelling

statements with the same party cue (see Figure 2b). Again, the ICR scores are low, averaging around

0.61. The are some important differences between party cues: LLMs agree less about the labels when

treated with the FPÖ party cue, than when compared to the rest of treatments.

Finally, Figure 3a shows ICR scores between LLMs and human annotators from Ennser-Jedenastik

and Meyer (2018). Similar to the LLM labels used in Figure 2a, we adjudicate across-run discrepancies of

the same model following majority rules. In terms of ICR, the best performing LLMs are LLaMa 3.1 and

ChatGPT-4o, with an average Krippendorff’s Alpha of .56 and .55, respectively; the worst performing

LLM is ChatGPT-3.5 Turbo with a Krippendorff’s Alpha of .43. The are also differences in the variation

of agreement between humans and LLMs across party cues. For the LLaMa family models, the agreement

with human coders across party cues is similar. That is not the case for ChatGPT-4o, where there is a

Krippendorff’s Alpha of 0.68 when labelling statements with the center-left SPÖ label, but 0.37 when

labelling statements with the extreme-right FPÖ label. We also estimate Krippendorff’s Alpha for each

run from every LLM (compared to human coders), and show a boxplot with the distribution of ICR (see

5In the Appendix we show all results using alternative adjudication methods, but the overall conclusions from the analysis
remain unchanged.

6

(a) ICR using LLMs adjudicated labels (b) ICR using LLMs labels from all runs

Figure 3: Inter-coder reliability scores between LLMs and human annotators. On the left, within-model
discrepancies across runs are adjudicated using majority rules. On the right, the labels from all runs
from every LLM is compared to the labels from human annotators.

Figure 3b). As expected, given the lower within-model consistency of ChatGPT models, there is greater

variation in ICR scores across runs when compared to models from the LLaMa family. Note, however,

that there are no overall performance gains from using adjudicated labels, nor labels from a specific run.

5 Results

In Table 1, we replicate the results from Ennser-Jedenastik and Meyer (2018), who estimate an ordered

logistical regression model where the dependent variable is the label by the coder (e.g., positive, neu-

tral/unclear, negative), and the independent variable of interest if the party cue indicator (using the

statement with no party label as the reference category). In their main findings, Ennser-Jedenastik and

Meyer (2018) show that party cues have an effect on coding decisions, but only when the treatment is

a party on the ideological extreme (i.e., Greens and FPÖ). They find that coders judge statements on

immigration from the Green party more positively, while statements with the FPÖ label are more likely

to be labeled negatively (see Table 1).

In Table 2, we estimate a similar ordered logistical regression model where the dependent variable is

7

Table 1: Replication of Ennser-Jedenastik and Meyer (2018)

Model 1: Fixed Effect Model 2: Random Effect

Grüne 1.18*** 1.06***
(0.21) (0.20)

SPÖ 0.00 0.00
(0.21) (0.20)

ÖVP -0.09 -0.09
(0.21) (0.20)

FPÖ -0.92*** -0.80***
(0.21) (0.20)

Cut 1: Constant -1.50* -3.15***
(0.68) (0.43)

Cut 2: Constant 2.05** 0.07
(0.68) (0.42)

Num.Obs. 2000 2000

Note: Figures are coefficients from ordered logistic regression, with stan-
dard errors in parentheses; statement FE (Model 1) not shown. Confi-
dence levels reported as follows: ∗∗∗p < .001; ∗∗p < .01; ∗p < .05. Grüne
= Green Party; SPÖ = Social Democrats; ÖVP = People’s Party; FPÖ
= Freedom Party.

the label provided by the LLM,6 and the independent variable of interest is the party cue indicator (i.e.,

treatment). Models 1 and 3 include all aggregated data and control for each LLM, while Models 2 and 4

include sentence fixed- and random-effect, respectively.7 The positive coefficients from the Green party

and SPÖ cues (far left and center left) suggest that statements with those cues were judged as more

positive by LLMs than statements without party cues. Similarly, LLMs evaluated statements with the

ÖVP and FPÖ cues (center right and far right) more negatively than statements without party cues.

The differences in labelling decisions are substantive (as well as statistically significant). When

compared to the neutral statements, the Green party (left) cue increases the probability of a statement

being coded as ‘Positive’ by 13.9 percentage points, while it decreases the probability that LLMs use the

‘Neutral’ label by 3.0 percentage points, and the ‘Negative’ label by 10.9 percentage points.8 We observe

a similar yet less pronounced effect when applying the SPÖ (center-left) cue: LLMs are 6.7 percentage

6For Table 2, we use the labels where we adjudicate discrepancies following majority rules. In the Appendix we estimate
the same model using alternative adjudication strategies, as well as all the runs individually, and find similar results.

7As a robustness check, in the Appendix we estimate every model only using data of each LLM seperately. The results are
consistent regardless of model specification.

8We estimate all predicted probabilities from Model 3, using LLM random-effects, as these yield the more conservative
effects.

8

points more likely to label a statement as ‘Positive’, and 1.0 and 5.6 percentage points less likely to label

a statement as ‘Neutral’ and ‘Negative’, respectively. There is an opposite effect for the FPÖ (far right)

cue. For example, LLMs are more likely to identify statements with the FPÖ label as negative–17.2

percentage points more likely–, while it decreases the chances that a statement is coded as ‘Positive’ by

15.9 percentage points. The results are robust to estimations using each LLM sub-sample.9 The controls

provide additional insight into the effect of party cues on labelling decisions. The results from Model in

Table 2 show that both LLaMa 3 and LLaMa 3.1 are more likely to label statements as ’Positive’ than

ChatGPT 3.5-Turbo (p < 0.05).

There are two important elements to note from comparing the effects of party cues on human and

LLM coders. First, as Ennser-Jedenastik and Meyer (2018) suggest, coders use prior knowledge to con-

textualize information provided by text. For humans, prior knowledge comes from heuristic processing;

for LLMs, from the context in which party labels appear in pre-training data (i.e., the massive cor-

pora used to train LLMs). Both human and LLMs coders seem to understand contextual cues in the

same way: the direction of the bias for left-leaning parties and right-leaning parties match with prior

expectations about their position vis-a-vis immigration (i.e., left-leaning parties are more likely to frame

immigration in a positive light; right-leaning parties are more likely to frame immigration in a negative

light). Second, for LLMs party cues appear to have greater weight on the decision to label statements

one way or another. For example, unlike with human coders, the center-left SPÖ and the center-right

ÖVP party labels have a significant effect on labelling decisions. In the Appendix we show that, when

estimating the models using all the runs, the effect of cues is also statistically significant for all parties.

Furthermore, the magnitude of the effect of all party cues is greater in LLMs than in human coders.

The biggest effect of party cues on human coders come from the Green party treatment. Compared to

the no party label, the Green party label increases the probability of a statement being coded as ‘Posi-

tive’ by 22 percentage points, while decreasing the probability that human coders use the ‘Neutral’ and

9In the Appendix, we estimate the same model using the data from each individual run, rather than the adjudicated data.
The results and conclusions remain unchanged.

9

Table 2: The Impact of Party Cues on Labelling Decisions
from LLMs

Model 1 Model 2 Model 3 Model 4

Grüne 0.56*** 2.37*** 0.56*** 2.19***
(0.10) (0.18) (0.10) (0.17)

SPÖ 0.27** 1.10*** 0.27** 1.03***
(0.09) (0.16) (0.09) (0.15)

ÖVP -0.09 -0.40** -0.09 -0.37*
(0.09) (0.15) (0.09) (0.15)

FPÖ -0.72*** -2.93*** -0.72*** -2.77***
(0.09) (0.17) (0.09) (0.17)

ChatGPT-4o -0.06 -0.14
(0.08) (0.14)

LLaMa 3 0.28** 1.17***
(0.09) (0.14)

LLaMa 3.1 0.33*** 1.52***
(0.08) (0.15)

Cut 1: Constant -0.60*** 0.94 -0.73*** -2.39***
(0.09) (0.55) (0.11) (0.55)

Cut 2: Constant 0.46*** 5.39*** 0.33** 1.78**
(0.09) (0.57) (0.11) (0.55)

Num.Obs. 4000 4000 4000 4000

Statement FE No Yes No No
Statement RE No No No Yes
LLM RE No No Yes Yes

Note: Figures are coefficients from ordered logistic regression,
with standard errors in parentheses; statement fixed-effects for
all fixed-effects models not shown. Confidence levels reported
as follows: ∗∗∗p < .001; ∗∗p < .01; ∗p < .05. Grüne = Green
Party; SPÖ = Social Democrats; ÖVP = People’s Party; FPÖ
= Freedom Party.

‘Negative’ categories by 19 and 3 percentage points, respectively (Ennser-Jedenastik and Meyer, 2018).

When using the same model specification for LLMs (coder and sentence random-effects in Model 4), the

Green party cue increases the probability of a statement being coded as ‘Positive’ by 45.61 percentage

points, while decreasing the probability that LLMs use the ‘Neutral’ and ‘Negative’ categories by 38.3

and 7.39 percentage points, respectively.

10

6 Conclusion/Discussion

Our results show that, similar to human coders, contextual information affects responses from LLMs. In

particular, we provide evidence of how party cues effect the way that LLMs label policy statements: left

and center-left party cues increase the probability an immigration related statement will be labelled as

positive; right and center-right party cues increase the probability an immigration related statement will

be labelled as negative. Unlike humans, this effect is not limited to parties at the ideological extremes.

We also find that the magnitude of the effect is greater for LLMs than it is for human coders.

Ennser-Jedenastik and Meyer (2018) argue that human coders use prior knowledge to contextualize

information, what they call heuristic processing, and that this contextualization will have an effect on

policy-related labelling decisions. We argue for a similar intuition when it comes to LLMs. LLMs are

trained using troves of human-generated text data, and high valence tokens, such as party labels, are

more likely to appear under specific contexts. Since the data reflects biases from society, these biases

will also be picked up by LLMs. Given the obscurity of how LLMs are trained, it is difficult to assess the

degree to which our proposed mechanism is actually affecting the decisions taken by LLMs. However,

future research can expand on the types of cues, and types of tasks, that affect the behavior of LLMs.

The context-based decision-making observed from LLMs is not necessarily problematic. Informa-

tional cues can improve the validity of the data as long as the priors of LLMs are ’correct.’ However,

the impossibility of realistically perusing the data used to train LLMs, or of understanding the ‘thought

process’ behind any given response, makes it unlikely for researchers to know what these priors are,

and which tokens (or set of tokens) have these priors embedded.10 More importantly, with the constant

updating of LLMs, as well as the proliferation of new LLMs, it is difficult to know whether priors will

all be the same across platforms and time.

Our findings also speak more broadly to the behavior of LLMs. In this research note, we use 10 runs

10Future research should explore how fine-tuning LLMs–using training data to customize the behavior of LLMs to a specific
task–can adjust the priors of LLMs to provide more accurate responses.

11

to account for the probabilistic nature of text generation (Timoneda and Vallejo Vera, 2024). We find

that internal consistency (i.e., the consistency of results across multiple runs) varies greatly across LLM

families and LLMs. This has important implications, not only for the use of LLMs as coders, but in the

replicability of outputs from LLMs in research. It also has important implications on the adjudication

choices made by researchers.

Overall, our research cautions researchers who are considering using LLMs as coders, echoing previous

research that has highlighted biases from human coders (Benoit et al., 2016; Ennser-Jedenastik and

Meyer, 2018; Laver and Garry, 2000). While there are many benefits to using LLMs as annotators,

such as their low cost and high accuracy (Gilardi, Alizadeh and Kubli, 2023; Heseltine and Clemm von

Hohenberg, 2024), as with any other labelling task, proper validation is paramount.

12

References

Ahn, Woo-Young, Kenneth T Kishida, Xiaosi Gu, Terry Lohrenz, Ann Harvey, John R Alford, Kevin B
Smith, Gideon Yaffe, John R Hibbing, Peter Dayan et al. 2014. “Nonpolitical images evoke neural
predictors of political ideology.” Current Biology 24(22):2693–2699.

Bender, Emily M, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency. pp. 610–623.

Benoit, Kenneth, Drew Conway, Benjamin E Lauderdale, Michael Laver and Slava Mikhaylov. 2016.
“Crowd-sourced text analysis: Reproducible and agile production of political data.” American Political
Science Review 110(2):278–295.

Braylan, Alexander, Omar Alonso and Matthew Lease. 2022. Measuring annotator agreement generally
across complex structured, multi-object, and free-text annotation tasks. In Proceedings of the ACM
Web Conference 2022. pp. 1720–1730.

Bullock, John G and Gabriel Lenz. 2019. “Partisan bias in surveys.” Annual Review of Political Science
22(1):325–342.

Dong, Xiangjue, Yibo Wang, Philip S Yu and James Caverlee. 2024. “Disclosure and mitigation of
gender bias in llms.” arXiv preprint arXiv:2402.11190 .

Ennser-Jedenastik, Laurenz and Thomas M Meyer. 2018. “The impact of party cues on manual coding
of political texts.” Political Science Research and Methods 6(3):625–633.

Gallegos, Isabel O, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernoncourt,
Tong Yu, Ruiyi Zhang and Nesreen K Ahmed. 2024. “Bias and fairness in large language models: A
survey.” Computational Linguistics pp. 1–79.

Gilardi, Fabrizio, Meysam Alizadeh and Maël Kubli. 2023. “ChatGPT outperforms crowd workers for
text-annotation tasks.” Proceedings of the National Academy of Sciences 120(30):e2305016120.

Heseltine, Michael and Bernhard Clemm von Hohenberg. 2024. “Large language models as a substitute
for human experts in annotating political text.” Research & Politics 11(1):20531680241236239.

Hicks, Michael Townsen, James Humphries and Joe Slater. 2024. “ChatGPT is bullshit.” Ethics and
Information Technology 26(2):38.

Laver, Michael and John Garry. 2000. “Estimating policy positions from political texts.” American
Journal of Political Science pp. 619–634.

Motoki, Fabio, Valdemar Pinho Neto and Victor Rodrigues. 2024. “More human than human: measuring
ChatGPT political bias.” Public Choice 198(1):3–23.

Rotaru, George-Cristinel, Sorin Anagnoste and Vasile-Marian Oancea. 2024. How Artificial Intelligence
Can Influence Elections: Analyzing the Large Language Models (LLMs) Political Bias. In Proceedings
of the International Conference on Business Excellence. Vol. 18 pp. 1882–1891.

Rozado, David. 2024. “The political preferences of llms.” PloS one 19(7):e0306621.

Schaffner, Brian F and Samantha Luks. 2018. “Misinformation or expressive responding? What an
inauguration crowd can tell us about the source of political misinformation in surveys.” Public Opinion
Quarterly 82(1):135–147.

13

Timoneda, Joan C. and Sebastián Vallejo Vera. 2024. “BERT, RoBERTa or DeBERTa? Comparing
Performance Across Transformer Models in Political Science Text.” The Journal of Politics .

Urman, Aleksandra and Mykola Makhortykh. 2023. “The silence of the LLMs: Cross-lingual analysis
of political bias and false information prevalence in ChatGPT, Google Bard, and Bing Chat.” OSF
Preprints https://doi.org/10.31219/osf.io/q9v8f .

Webb Williams, Nora, Andreu Casas, Kevin Aslett and John D Wilkerson. 2023. “When Conservatives
See Red but Liberals Feel Blue: Why Labeler-Characteristic Bias Matters for Data Annotation.”
Available at SSRN 4540742 .

Yang, Zonghan, Xiaoyuan Yi, Peng Li, Yang Liu and Xing Xie. 2022. “Unified detoxifying and debiasing
in language generation via inference-time adaptive optimization.” arXiv preprint arXiv:2210.04492 .

14

	Introduction
	Bias in Annotation
	Replication Setup
	Inter-LLM and Inter-Coder Reliability
	Results
	Conclusion/Discussion

